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Introduction

• Polluted air can adversely affect humans, plants, 
animals and buildings.

• Major pollution events can cause illness and death

• Chronic pollution, even at low levels can cause 
and exacerbate respiratory illness.

• Pollution may arise from industry, domestic and 
commercial heating, agriculture and transport.

• Major problems are now being created by motor 
vehicles, despite technological improvements.



Glasgow Street Canyon



Glasgow Urban Motorway



Rationale for Air Quality Modelling

• Establishing emission control legislation

• Evaluating emission control strategies

• Locating future sources

• Planning control of pollution episodes

• Assessing responsibility for pollution

• Spatial and temporal interpolation of data



Main Air Pollutants

• Carbon monoxide

• Sulphur dioxide

• Nitrogen dioxide

• Particulate Matter

• Lead

• Benzene

• 1,3-butadiene

• Heavy metals (Hg, Cd, 

Ni, Cr)

• Arsenic

• Poly-aromatic 

hydrocarbons (PAH)

• Ozone

• Peroxyacetyl nitrate 

(PAN)



Air Pollution Targets the Eyes, 

Respiratory System and Nervous 

System



Carbon monoxide

• Caused by incomplete combustion of carbon in the 

fuel

• Internal Combustion engine is primary source in 

urban areas

• Combines with haemoglobin in the blood and 

affects nervous system

• Relatively long lifetime in atmosphere: 50 days

• Effectively a conserved tracer



Air Quality Models

• Air quality models attempt to simulate the 

concentrations of air pollutants in the real world.

• Mathematical models use analytical and 

numerical formulations, usually implemented on 

computers.  

• Models may be deterministic or statistical.

• Models may be based on first principles or be 

empirical.



Eulerian Advection/Diffusion Models

• Wind speeds and concentrations are 

specified in a stationary co-ordinate system 

(i.e. as “fields”)

• Wind speed field is found using 

computational fluid dynamics (PHOENICS 

CFD or from measurements)

• Advection diffusion equation solved for 

concentration field.



Advection Diffusion Equation 

(e.g. in PHOENICS)
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C(x,y,z,t) = concentration of pollutant

KD(x,y,z,t) = atmospheric turbulent diffusion coefficient

U(x,y,z,t) = windspeed vector

S(x,y,z,t) = source/sink for pollutant

= gradient operator

2 = Laplacian operator



PHOENICS CFD Modelling

• Two-dimensional, infinitely long street 

canyon 

• Cartesian coordinates

• Standard k- turbulence model

• Steady State



Hope Street, Glasgow



Wind Rose for Meteorological 

Office Weather Station at Bishopton
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Typical Wind Speed Distribution for 

Bishopton Weather Station
Weibull Distribution: 270 deg. Sector

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 5 10 15 20 25 30

Wind Speed (m/s)

P
ro

b
a

b
il

it
y

 D
e
n

s
it

y
 (

s
/m

)

Alpha = 1.51, Beta = 5.03



Standard k- Turbulence Model

Equation   S 

Turbulent 
Kinetic Energy 

k t/k (G-) 

Dissipation Rate  t/ (/k)(C1G - C2) 
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k=1.0, =1.314, C1=1.44, C2=1.92, C= 0.09



PHOENICS two-dimensional simulated wind flow 

in a street canyon  for W=30 m H=20 m
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PHOENICS two-dimensional simulated wind flow 

in a street canyon  for W=40 m, H=5 m
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PHOENICS CO contours (ppm) for a wind speed 

above building U=5 m s-1, W=30 m H=20 m
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PHOENICS CO contours (ppm) for a wind speed 

above building U=5 m s-1, W=40 m, H=5  m
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Comparison between predicted and measured CO for 

leeward face of upwind building, Hope Street, Glasgow
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Comparison between predicted and measured CO for wind-

ward face of downwind building, Hope Street, Glasgow
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Glasgow Integrated Air Quality 

Model
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Traffic Simulation

• SATURN: Simulation and Assignment of 

Traffic in Urban Road Networks

• Network analysis software developed by the 

Institute of Transport Studies, University of 

Leeds

• Commercial Distributor, W S Atkins of 

Epsom, UK, from 1981



Calculated Fleet Composition
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Estimated CO Emission Factors 

(Casella Stanger EFT 2e)
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Carbon Monoxide Emissions

Speed 

(km/h)

Emission 

(g/veh. km)

Speed 

(km/h)

Emission 

(g/veh. km

0 2.15 25 2.93

5 10.6 30 2.55

10 5.98 35 2.26

15 4.33 40 2.03

20 3.47



Diurnal Variation of Traffic Volume
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Monitoring Trailer in Renfield Street



Hourly Averaged Carbon Monoxide 

Concentrations for Fixed Monitors
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PHOENICS CFD, 3-D Modelling

• Cartesian coordinates

• Renormalisation Group (RNG) k- turbulence 

model

• PARSOL Algorithm (Partial Solution)

• Linearisation of minor irregularities in street 

directions

• Rotation of axes to align with streets



RNG k- Turbulence Model
Equation   S 

Turbulent 
Kinetic Energy 

k t/k (G-) 

Dissipation Rate  t/ (/k)(C1G - C2) -  
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Rotation of the AutoCAD Supporting 

Plate



Wind Field for AutoCAD Solid 

Model of Glasgow LAQM Area
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Westerly
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Conclusions of Glasgow Study

• Predicted and measured CO concentrations 
are in reasonably good agreement, with 
average errors of 20 to 30 percent

• Ideally monitoring stations should be in 
regions of small concentration gradients, 
otherwise comparison may be difficult

• CFD models can form the basis of  an 
integrated air quality management tool



Existing UK Air Quality Models

• R-91, R-157 (Gaussian Plume Models from 

UK Atmospheric Dispersion Modelling 

Working Group)

• ADMS (CERC commercial code, taking 

account of vertical profiles of windspeed 

and turbulence and with integral plume rise 

model)

• ADMS Urban (CERC development 

including mobile sources and complex 

topography)



General Conclusions

• Large variety of model types and packages.

• Choose simplest for the purpose!

• Models need to be calibrated and validated.

• Accuracy of models may be limited 

(perhaps to within only a factor of 2!)

• CFD models may soon displace simpler 

Gaussian plume models!
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