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ABSTRACT 

We performed a numerical simulation of the sloshing of a 

diffusion interface between two miscible liquids (pure and salt 

water) in order to address the first step in the understanding the 

behaviour of very expandable cryogenic liquids. The two 

phases of some tenth of cm high are contained in a cylindrical 

container of 1 m in diameter in a gravitational stable 

configuration. Two ways of exciting internal waves are 

considered, by moving periodically the tank along one fixed 

direction and by moving up and down an insert located inside 

the tank. The study proves that the dynamic behaviour of the 

miscible interface is quite different than that of an gas-liquid 

interface: when exciting the waves by periodic lateral motion, 

sheering-induced diffusion leads to a fast thickening of the 

interface and to a lowering of the first resonance mode of the 

tank which does not match at all with the experimental results; 

when exciting the internal wave by moving an insert, as in the 

experimental setup, the interface evolves by molecular diffusion 

only and the results are closer to the experimental one. Time 

series of the interface displacement are numerically obtained by 

solving the Navier Stokes equation using the Phoenics 

numerical code. The existence of a swirling wave mode is 

confirmed; the transition threshold between sloshing and 

swirling is detected and the present result show discrepancies 

with the experiments.  

 

INTRODUCTION 

 Understanding mechanisms of the sloshing of 

propellants in the tanks of space vehicles is an important issue 

both for the thermal control, pressure regulation and guidance. 

The problem has been studied experimentally in reduced scale 

experiments for equilibrium interfaces, e.g. between a gas and a 

liquid [1]. However, in the case of cryogenic, extremely 

expandable liquids, no real attempts have been made to address 

the dynamics of diffusion interfaces. These pseudo-interfaces 

correspond to the huge density gradient associated to heat 

diffusion interfaces in very expandable, low heat diffusing 

supercritical, or near-critical, van der Waals liquids. Then can 

behave as real interfaces and give rise to Rayleigh-Taylor like 

instability [2]. The question of hyper compressible fluids 

modelling is extremely difficult since it needs the solution of 

van der Waals fluids equations which poses numerous 

numerical challenges [3]. Defining experiments on the 

dynamics of these interfaces is also extremely difficult because 

the fluid cells must be accurately thermostated and the setup 

confined in a Dewar. However experiments where recently 

performed on the dynamics of mass diffusion interfaces [4], 

which are of great interest for the above-mentioned goal.  They 

addressed the transition from slosh to swirl of a diffusion 

interface between pure and salt water when the internal waves 

are resonantly forced by the vertical oscillations of an insert in a 

cylindrical container. They measured the time series of the 

interface displacement in different locations and the phase 

diagram of in different points allowed to characterize the 

transition in terms frequency and oscillation amplitude. 

However going beyond the interface displacement measurement 

is difficult and particularly difficult is the visualization of the 

flow pattern and other characteristics. We performed a 

numerical simulation of the sloshing of a diffusion interface in 

two configurations using the Phoenix code: interface forcing by 

lateral oscillatory motion of the container and interface forcing 

by vertical motion of an insert. Time series of the interface 

displacement are numerically obtained and the transition 

threshold is detected. The flow patterns are visualized and the 

results compared with the experiments whenever possible.  

THE EXPERIMENTAL CONTEXT 
 

The configuration under consideration is that of ref. [4]. A 

cylindrical container is filled with salt water and pure water in 

gravitationally stable configuration. The height of the fluid 

layers is 19 cm and the diameter of the cylinder is 1 m. The 

pure water is introduced first and then is introduced the salt 

water. The interface was resonantly forced by repeatedly 

moving an insert up and down (Fig. 1) at a frequency f  and 

amplitude A.  

 
Figure 1: The experimental configuration: A cylindrical 

container of 1 m in diameter is partially filled with a two layer 

fluid in a gravitational stable position: a lower layer of salt 
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water (0.19 m) and an upper layer of pure water (0.19 m). The 

insert is moved up and down to induce interface motion. 

 

 

The shallow water dispersion relation for the primary mode 

in a circular domain is given by 011 ck , where 

Rk 84.11   where R  is the basin radius and 0c the linear 

phase speed [4, Lamb]. For a two-layer fluid, the phase speed 

can be approximated a Ehgc '2

0  , where 'g  is the reduced 

gravity defined by 
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equivalent depth. For a typical experiment the periodic forcing 

is initiated at a prescribed frequency far from the frequency of 

the primary mode. The forcing frequency was then changed step 

by step, increasing or decreasing depending on the initial 

frequency value compared to the frequency of the primary 

mode, covering in each case the frequency 

range 15.175.0  f . For each value of the forcing 

frequency, the steady state was awaited to be reached after 

about 50 forcing periods when the free response is dissipated by 

interface and boundary friction.  The interface displacement 

was collected by ultrasonic probes at different points along the 

sloshing radius of the interface and in the orthogonal (sloshing 

axes). In the absence of swirling, the interface motion on the 

latter is negligible whereas it takes a finite value when swirling 

appears. The experiments show a transition from slosh to swirl 

in the covered frequency range.  

THE NUMERICAL CODE 
 

We have modeled the above described systems using a 

cylindrical coordinate frame of reference and assuming a time 

dependent incompressible fluid.  Cyclic boundary conditions 

are considered at 0 – 2. We solved the equations of 

momentum, continuity and salt concentration, with the finite 

volume code Phoenics. The density variation in the body forces 

has been introduced through a Boussinesq approximation. The 

algorithm solution of the pressure field, which is essential for 

the determination of the velocity field, is obtained using the 

SIMPLEST algorithm based on the SIMPLER algorithm. The 

mesh size has been chosen in azimuthal direction (32 cells), in 

radial direction (20 cells) and in axial direction (60 cells). In 

azimuthal direction the grid is uniform and in the other direction 

it is finer at the salt interface. The grid is shown in Fig. 2 and is 

used to solve the insert motion-generated interface 

displacement; the lateral motion case grid is the same except 

that there is no insert and that the container is closed where the 

insert bottom is initially located. 

 

 
Figure 2: Mesh distribution in the Y-Z plane for the insert 

motion- induced interface motion. 

 

The movement of the insert has been modeled with the 

special features of the Phoenics code: MOFOR (Moving 

Frames of Reference). The insert is moved with a sinusoidal 

oscillation:  

 ta sin . In our cases, a = 1.5cm and   varies from 0.24 to 

0.36. 

In the case of the lateral oscillation acceleration in the form of 

 ta  sin2
has been introduced as a body force term. The 

effect of such acceleration is directly dependent on the 

amplitude of the density gradient at the interface of salted and 

pure water whereas in the case of the insert the movement of the 

fluid depends only in the movement of the insert.  

 

THE NUMERICAL SIMULATION 
 

The values of the geometrical and mechanical parameters 

are those corresponding to run 6 in [4] 

- Height of the salt water layer: 0.19 m 

- Height of the pure water layer: 0.19 m 

- mhE 095.0  

- resonance frequency Hz3128.01   

- Forcing frequency:  

Set (1) 78.0,92.0,96.0,07.11  f  (decreasing) 

Set (2) 96.0,92.0,88.0,80.01  f  (increasing) 

- insert motion amplitude A= 0.015 m 

The fluid is initially at rest and at thermodynamic equilibrium. 

At the initial time either by moving the whole tank or by 

moving the internal insert induces the motion of the interface. 

The collected data are the interface displacement time series at 

different measurement points (Fig.3) as well the interface 

displacement at probe 5 versus interface displacement at probe 
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1 for different values of the forcing frequency. The interface 

location is defined as the point where the concentration is 

equal to that of the salt water. These data correspond to those 

measured in [4]. The numerical procedure is as close as that 

used during experiments: the lateral oscillation is maintained 

during 50 periods and the frequency is changed again 

increasingly or decreasingly. Each time period corresponds to 

200 s.   The raw times series (non filtered) of the interface 

displacement containing the gravest mode as well as the higher 

harmonics are collected for the different decreasing frequencies 

and increasing frequency 

Due to the capabilities of the Phoenix code, it is difficult to take 

into account the free surface between the upper pure water layer 

and the ambient air. This is why we considered the tank as a 

close volume entirely filled by the two fluid layers.  

 
 

Figure 3: Location and numbering of the interface 

displacement probes. 

 

 

Excitation of the primary mode by harmonic, linear motion 

of the tank  

 

When studying equilibrium interface between two phases  

(liquid and gas for example) the mode of excitation of the 

sloshing modes in the tank can be achieved by two means: 

either a periodic translation of the tank or a vertical motion of 

an internal insert. This is why we first chose to force the 

interface motion by introducing a volumetric dragging inertia 

force corresponding to a periodic motion of the container at a 

prescribed frequency along a horizontal line. The amplitude of 

the container displacement was adjusted to produce interface 

motion amplitudes of the same order as those observed in 

experiments, namely 0.55 m, the important thing being to 

detect the transition between slosh to swirl. We observe that the 

interface thickening is much faster than it would be by pure 

mass diffusion only as shown in Fig. 4. This due to the shear 

induced diffusion of the density interface.  
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Figure. 4: Density profile for the case with a moving piston 

(solid) and for the case of lateral acceleration (dashed) after 100 

periods: the thickening of the interface is due to shear –induced 

diffusion. 

 

As a matter of facts, the inertia force only plays initially in the 

interface region (strong density gradient) and creates a shearing 

velocity field parallel to the latter. (Fig. 5) (in the absence of 

interface, there would be no motion generated in the closed 

container). The thickening of the interface provokes a decrease 

of the natural frequency of the container so that the forced 

response being detuned from the resonance conditions, the 

interface motion amplitude decreases which may explain the 

absence of transition to swirl.  
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Figure. 5: Evidence of the shear flow induced in the vicinity of 

the interface by the oscillatory motion of the whole tank 

( 96.01  f , decreasing frequencies). 

The corresponding trajectories are given in Fig 7 

 
 

Figure 7: Trajectories of the fluid particles as the fluid moves 

under the tank lateral, harmonic motion 

 

The result is that the swirl motion is never observed as shown in 

Fig. 8 for the sample frequency 
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Figure 8: Interface motion at point 5 versus interface location at 

point 1 for 1 f  0.96. 

 

Excitation of the primary mode by moving an insert 

 

Moving the tank to generate the interface motion is not 

appropriate since it provokes the interface shear-induced 

diffusion. We thus consider moving an insert inside the closed 

tank to avoid introducing a free surface. (Fig. 8) and to be 

however closer to the experimental configuration. The insert 

motion amplitude is set to 0.015 m as in [3].  For each value of 

the frequency of oscillations, 50 periods are computed in order 

to reach a steady state and to damp the free response of the 

container by boundary and bulk friction. Two sets of calculation 

are performed: one set of four calculations for decreasing 

frequencies: the first set for the decreasing frequencies such 

that: 

78.0,92.0,96.0,07.11  f  

and one set for the following increasing frequencies 

96.0,92.0,88.0,80.01  f  

The diffusion of the interface is closer to that produced by 

molecular diffusion only which means that the natural frequency 

does not vary much during the course of the experiment. The 

shear at the interface is much less (Fig. 8) since the origin of the 

motion is the surface forces located at the insert surface at not a 

body force located in the interface region as in the previous 

case. 

 
Fig. 8: Velocity vector field in the vertical plane for insert-

induced motion: the shear of the interface is less than in the tank 

oscillations 

The raw times series (non filtered) of the interface displacement 

have been collected and are given for the first frequency of the 

decreasing set of frequencies (Fig. 9 (a)). The plot of the 

interface displacement at point 5 as a function of the interface 

displacement at point 1 is given for the increasing set of 

frequencies in Fig 9 (b) to (e) and for the increasing set of 

frequencies in Fig. 10 (a) to (d). The simulations are performed 

for the same parameters as in the previous section. The 

thickening of the interface (Fig. 11) is much less which tends to 

prove its shearing origin since the shear is much lower in this 

configuration (Fig 11) shows the velocity vector in the vertical 

plane 0 . We note that the interface displacement for the 

same insert oscillation amplitude is smaller than in the 

experiments.  The may be due to the current geometry which 

does not involve any free air-water free surface.  

Fig.  9 (b)-(e) show that for decreasing frequencies the swirl 

appears for 96.01  f  and looks to increase slowly with 

the offset to the threshold (this seems to be contradiction with 

the liquid-gas interface experiments) while the frequency shift 
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decrease (what is consistent with the mentioned experiments). 

This seems to be contradiction with the liquid-gas interface 

experiments [4].  On the other hand, the swirling motion seems 

to exist for 78.01  f  whereas experiments do not show 

it for this frequency.  Fig. 10 (a)-(d) show that the swirl exists 

for the same frequencies it exists for the decreasing frequency 

approach to the resonance. However the detailed motion 

depends on the way the resonance is approached. A questioning 

observation is the offset position of the interface compared to 

its equilibrium one which is not understood up to now.  
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Figure 9: (a) Raw time series of the interface motion at point 5 

(color)) and 1 (black) for the case 07.11  f ; (b) to (e): 

interface displacement at point 5 as a function of that at point 1 

for the decreasing frequencies set.   
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Fig 10 (a)-(d) Interface displacement at point 5 as a function of 

that at point 1 for the increasing frequencies set.   

 

CONCLUSION 
 

The numerical simulation of near resonance large 

amplitude motion indicates that the planar resonant internal 

wave bifurcates to aw swirling wave for a near-resonance 

frequency range. These preliminary results are in partial 

agreement with experiments and need to be refined. The 

simulation conditions must be closer to the experimental one 

before an extensive exploration of the phenomena is performed, 

including the characterization of the bifurcation, the 

characterization of the wave breaking scenarios.  
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