Evaporation of Liquid Chlorides in Closed Tanks using the PHOENICS Code

Presentation of a Rigid Interface Model (RIModel)

Olivier PRAT^{1,3} - Jalil OUAZZANI² - Olivier BRIOT³

¹ QUALIFLOW S.A. – *MONTPELLIER*² ARCOFLUID – *ORLANDO*, *FL*³ GROUPE D'ETUDE DES SEMICONDUCTEURS – *MONTPELLIER UNIVERSITY*

SUMMARY

- 1 INTRODUCTION
- 2 EVAPORATION OF LIQUIDS Theorical Background
- 3 RIModel (Rigid Interface Model)
 - Governing Equations and Characteristics
 - Application with the PHOENICS Code
 - Boundaries Conditions for Parametric Study
 - Simulated Cases
 - Exemple of Results
- 4 RIModel VALIDITY LIMIT Subcooled Pool Boiling Situation
- 5 CONCLUSION

INTRODUCTION

- 1 Optical Fiber Industry
- Liquid (SiCl₄, GeCl₄, ...) changed into Vapor and Oxydized (SiO₂, GeO₂, ...)
- Mainly used Current Technique : Bubbling ⇒ Carrier Gas send into Liquid
- Intended Technique : Direct Liquid Evaporation for Higher Vapor Flow expected
- 2 Prediction of Evaporation Phenomenon means turn to Numerical Simulation
- Hydrodynamic and Thermal Phenomena Simulation inside Closed Tanks
- Start from Equilibrium Situation and Simulation of Flow Requirements for Optical Fiber Production

INTRODUCTION

- 3 Specific Model for prediction of Evaporation Process in closed Tanks
- Multi-Domain Method
 - ⇒ Resolution of each Phase separately
 - ⇒ Two Phases linked by Boundaries Conditions at the Interface
- Use CHAM's CFD PHOENICS
 - ⇒ Computation of a Specific Model for Evaporation in Closed Tanks
 - ⇒ Interface taken as a Rigid Plate with a Moving Speed
 - ⇒ RIModel (acronym of Rigid Interface Model)

EVAPORATION OF LIQUIDS - Theorical Background

- 1 Two kinds of Evaporation Processes for Liquids
- Vapor directly produced at Liquid / Vapor Interface (Radiative Heating for instance)
- Vapor produced by Bubbles starting at Immersed Solid Heated Surface (Pool Boiling)
- <u>2 Pool Boiling</u> \Rightarrow 4 Boiling Mechanisms
- Subcooled Boiling \Rightarrow No bubbles (or Recondense near Heated Surface)
- Boiling with Net Evaporation \Rightarrow *Nucleate Boiling Region*
 - ⇒ Partial Film Boiling Region (or Transition)
 - \Rightarrow Film Boiling Region

EVAPORATION OF LIQUIDS - Theorical Background

3 - How to predict Evaporation Phenomenon in Closed Tanks?

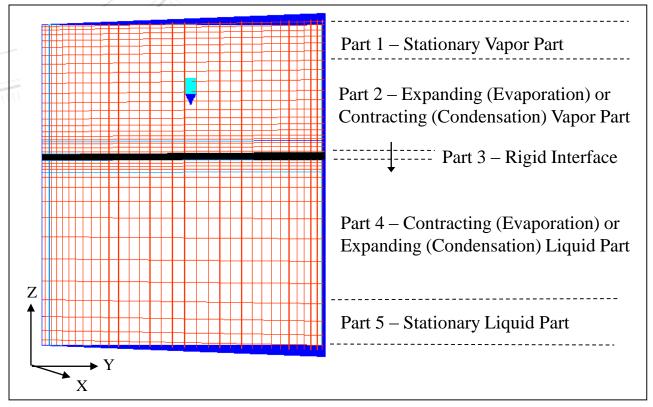
\Rightarrow ASSUMPTION :

Pool Subcooled Boiling ⇒ *Pressure Stability, Avoiding Decay of Liquid Precursors*

⇒ CONSEQUENCE :

Two Phases Liquid and Vapor strictly separated: Analogy with Melting Process

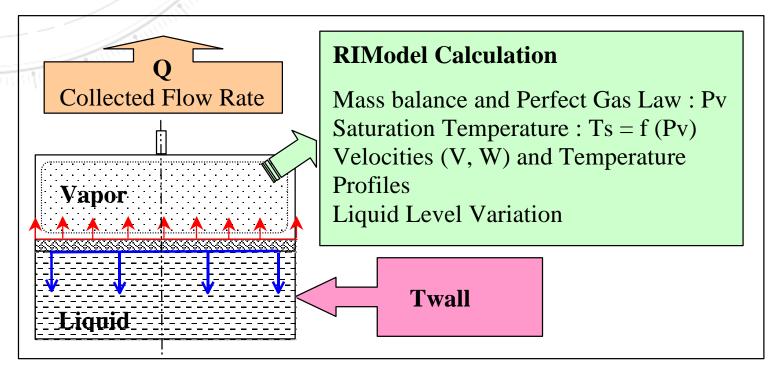
- ⇒ Two Regions with Different Thermodynamic Properties separated by a Moving Interface
- ⇒ Heat Exchange at the Interface according Heat Conduction with Release (Solidification or Condensation Process) or Absorption of Heat (Melting or Evaporation Process)


RIModel - Governing Equations and Characteristics

- 4 Implement Features with PHOENICS ⇒ Rigid Interface Model (RIModel)
 - Vapor Quantity Calculation by a Mass Balance and the Perfect Gas Law: Mvap (t)
 Mvap (t) = Mvap(t = 0) Mcoll (t) + Mint (t) ⇒ Pvap
 - Liquid Interface Temperature Calculation with Antoine's Equation (SiCl4): **Ts** $Pvap = 10^{4}.09777 1200 / (Ts 37) \Rightarrow Ts$
 - Mass Exchange Calculation at the Interface : **qint** (**t**) qint (t) . $\Delta Hvap = [\lambda vap . (\partial T/\partial z) \lambda liq . (\partial T/\partial z)] \Rightarrow$ **qint**(**t**)
 - Interface taken as Rigid Plate with Moving Speed equal to Evaporation Speed
 - Friction at the Vapor Side of the Plate and Slip without Friction at the Liquid Side of the Plate

RIModel - Application with the PHOENICS Code

- 1 Moving Grid Option ⇒ ZMOVE function of PHOENICS
- 2 Tank Internal Domain splitted in 5 Zones


International PHOENICS Users Conference - Moscow 23-27 sept. 2002

RIModel - Boundaries Conditions for Parametric Study

3 PARAMETERS FOR
PARAMETRIC STUDY

- \Rightarrow Q (Collected Vapor Flow)
- \Rightarrow S (Size of Evaporation Surface)
- \Rightarrow Twall (Fixed Wall Temperature)

International PHOENICS Users Conference - Moscow 23-27 sept. 2002

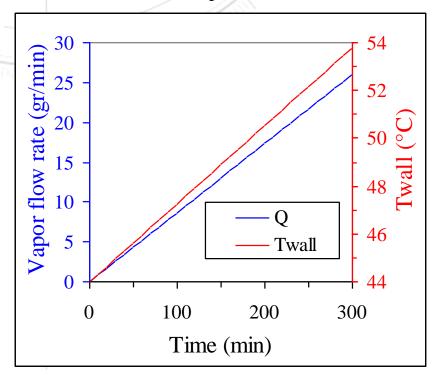
RIModel - Simulated Cases

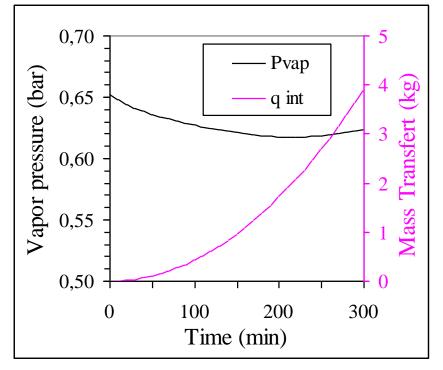
		S1	$S2 = 2 \times S1$	$S3 = 5 \times S1$
		Geometry $n^{\circ}1$ ($S1 = 5.6 \text{ dm}^2$)	Geometry $n^{\circ}2$ ($S2 = 11.2 \text{ dm}^2$)	Geometry $n^{\circ}3$ ($S3 = 28 \text{ dm}^2$)
Q1	Vapour Flow n°1 (Q1 = 6.5 gr/min)	Case n°1	Case n°4	Case n°7
$\mathbf{Q2} = 2 \times \mathbf{Q1}$	Vapour Flow n°2 (Q2 = 13 gr/min)	Case n°2	Case n°5	Case n°8
Q3 ≈ 5 x Q1	Vapour Flow n°3 (Q3 = 30 gr/min)	Case n°3	Case n°6	Case n°9

And for Every Case:

- ⇒ Same Tank Internal Volume (29 Liters) and Liquid Quantity (20 Liters)
- ⇒ Fixed Wall Temperature (Twall) fixed by "Empiric" Determination

International PHOENICS Users Conference - Moscow 23-27 sept. 2002

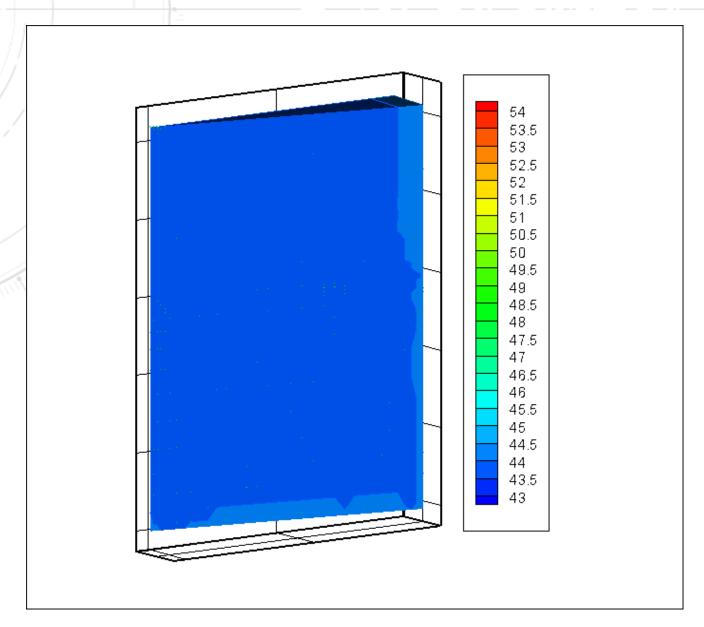



RIModel - Exemple of Results for Case n°5

1 - Boundary Conditions

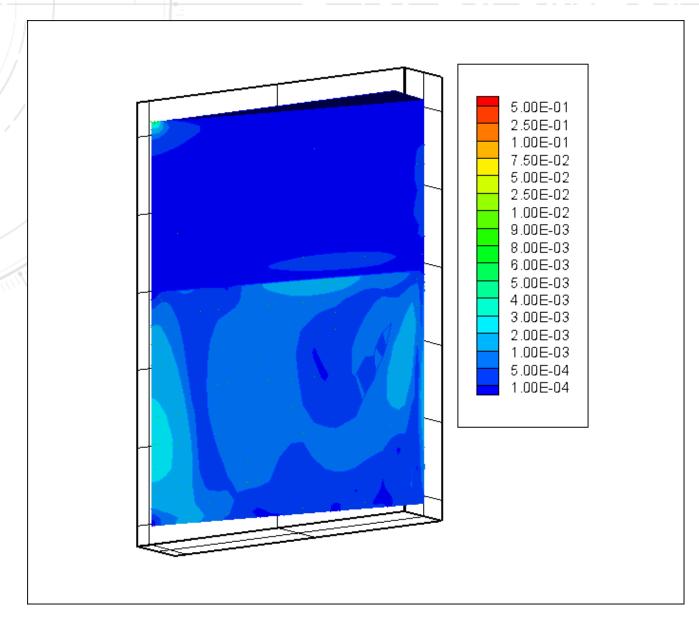
- \Rightarrow Collected Vapor Flow: Q2
- \Rightarrow Evaporation Surface : $S2 = 11.2 \text{ dm}^2$
- \Rightarrow Fixed Wall Temperature : Twall

- 2 Simulation Results (start from 44°C)
- ⇒ Vapor Pressure : Pvap
- \Rightarrow Interfacial Mass Transfert : q int



International PHOENICS Users Conference - Moscow 23-27 sept. 2002

qualiflow


Temperature

International PHOENICS Users Conference - Moscow 23-27 sept. 2002

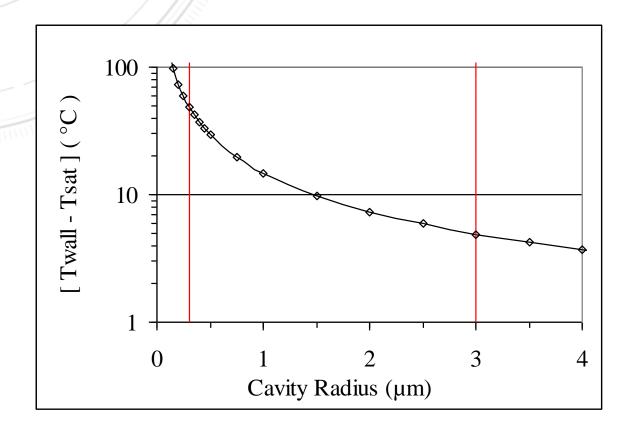
qualiflow

<u>Velocity</u>

International PHOENICS Users Conference - Moscow 23-27 sept. 2002

RIModel VALIDITY LIMIT - Subcooled Pool Boiling

- 1 The RIModel ⇒ Assumes Pool Subcooled Boiling Situation
- 2 The Transition Pool Subcooled Boiling to Nucleate Boiling
 - ⇒ Depend on Gap between Wall and Saturation Temperatures


$$\Delta T = Twall - Tsat = [2 \cdot \sigma \cdot Tsat] / [\rho vap \cdot \Delta H vap \cdot R]$$

- ⇒ Depend on Nucleation Cavity Radius
- 3 Typical Cavity Radius in the µm Range
 - $\Rightarrow 0.3 \ \mu m < Cavity Radius : R < 3 \ \mu m \Rightarrow 50 \ ^{\circ}C > \Delta T > 5 \ ^{\circ}C$
 - ⇒ CONSEQUENCE: RIModel valid for Temperature Gap of about 20°C (and even more: no major disturbance induced by Beginning of Nucleate Boiling)

RIModel VALIDITY LIMIT - Subcooled Pool Boiling

 \Rightarrow Onset of Heterogeneous Nucleation $\Rightarrow \Delta T = f(Cavity Radius)$

International PHOENICS Users Conference - Moscow 23-27 sept. 2002

RIModel - Parametric Study Results - Temperature Gap

 \Rightarrow Temperature Gap Dependence with Vapor Flow Rate (Q) and Evaporation Surface Size (S)

International PHOENICS Users Conference - Moscow 23-27 sept. 2002

CONCLUSION

- 1 The RIModel for Evaporation of Liquids in Closed Tanks is:
 - ⇒ Based upon Heat Conductivity at Liquid / Vapor Interface by analogy with Melting or Solidification Process
 - ⇒ Assuming Pool Subcooled Boiling Situation
 - ⇒ Assuming to preserve Plane Interface during Evaporation
- 2 The Parametric Study \Rightarrow Quantify influence of Boundary conditions (Q, S, Twall)
 - \Rightarrow For same couple (Q, Twall) \Rightarrow The larger (S) \Rightarrow The bigger (Pvap)
 - \Rightarrow For same couple (Q, Pvap) \Rightarrow The larger (S) \Rightarrow The smaller (Twall)
- 3 Critical discussion of Numerical Results
 - \Rightarrow With features of Boiling Process and Mechanism of Bubbles Generation \Rightarrow RIModel Limit of Validity